A collection of challenging motion segmentation benchmark datasets

Texto Completo
CollectionChallengingMotion.pdf embargoed access
Solicita copia
Al rellenar este formulario estáis solicitando una copia del artículo, depositado en el repositorio institucional (DUGiDocs), a su autor o al autor principal del artículo. Será el mismo autor quien decidirá enviar una copia del documento a quien lo solicite si lo considera oportuno. En todo caso, la Biblioteca de la UdG no interviene en este proceso ya que no está autorizada a facilitar artículos cuando éstos son de acceso restringido.
Compartir
An in-depth analysis of computer vision methodologies is greatly dependent on the benchmarks they are tested upon. Any dataset is as good as the diversity of the true nature of the problem enclosed in it. Motion segmentation is a preprocessing step in computer vision whose publicly available datasets have certain limitations. Some databases are not up-to-date with modern requirements of frame length and number of motions, and others do not have ample ground truth in them. In this paper, we present a collection of diverse multifaceted motion segmentation benchmarks containing trajectory- and region-based ground truth. These datasets enclose real-life long and short sequences, with increased number of motions and frames per sequence, and also real distortions with missing data. The ground truth is provided on all the frames of all the sequences. A comprehensive benchmark evaluation of the state-of-the-art motion segmentation algorithms is provided to establish the difficulty of the problem and to also contribute a starting point. All the resources of the datasets have been made publicly available at http://dixie.udg.edu/udgms/ ​
​Tots els drets reservats