A collection of challenging motion segmentation benchmark datasets
dc.contributor.author
dc.date.accessioned
2016-11-17T07:23:07Z
dc.date.available
2016-11-17T07:23:07Z
dc.date.issued
2017-01
dc.identifier.issn
0031-3203
dc.identifier.uri
dc.description.abstract
An in-depth analysis of computer vision methodologies is greatly dependent on the benchmarks they are tested upon. Any dataset is as good as the diversity of the true nature of the problem enclosed in it. Motion segmentation is a preprocessing step in computer vision whose publicly available datasets have certain limitations. Some databases are not up-to-date with modern requirements of frame length and number of motions, and others do not have ample ground truth in them. In this paper, we present a collection of diverse multifaceted motion segmentation benchmarks containing trajectory- and region-based ground truth. These datasets enclose real-life long and short sequences, with increased number of motions and frames per sequence, and also real distortions with missing data. The ground truth is provided on all the frames of all the sequences. A comprehensive benchmark evaluation of the state-of-the-art motion segmentation algorithms is provided to establish the difficulty of the problem and to also contribute a starting point. All the resources of the datasets have been made publicly available at http://dixie.udg.edu/udgms/
dc.description.sponsorship
This work is supported by the FP7-ICT-2011 7project PANDORA (Ref 288273) funded by the European Commission, two projects funded by the Ministry of Economy and Competitiveness of the Spanish Government. RAIMON (Ref CTM2011-29691-C02-02) and NICOLE (Ref TIN2014-55710-R)
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.relation
info:eu-repo/grantAgreement/MICINN//CTM2011-29691-C02-02/ES/ROBOT AUTONOMO SUBMARINO PARA LA INSPECCION Y MONITORIZACION DE EXPLOTACIONES DE ACUICULTURA MARINA/
info:eu-repo/grantAgreement/MINECO//TIN2014-55710-R/ES/HERRAMIENTAS DE NEUROIMAGEN PARA MEJORAR EL DIAGNOSIS Y EL SEGUIMIENTO CLINICO DE LOS PACIENTES CON ESCLEROSIS MULTIPLE/
dc.relation.isformatof
Reproducció digital del document publicat a: http://dx.doi.org/10.1016/j.patcog.2016.07.008
dc.relation.ispartof
© Pattern Recognition, 2017, vol. 61, p. 1-14
dc.relation.ispartofseries
Articles publicats (D-ATC)
dc.rights
Tots els drets reservats
dc.subject
dc.title
A collection of challenging motion segmentation benchmark datasets
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/embargoedAccess
dc.embargo.terms
Cap
dc.date.embargoEndDate
info:eu-repo/date/embargoEnd/2026-01-01
dc.relation.projectID
info:eu-repo/grantAgreement/EC/FP7/288273/EU/Persistent Autonomy through Learning, Adaptation, Observation and Re-planning/PANDORA
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.identifier.idgrec
025389
dc.contributor.funder
dc.relation.FundingProgramme
dc.relation.ProjectAcronym