Code to make spatio-temporal predictions of air pollutant levels and meteorological variables, based on data observed at monitoring and meteorological stations
Texto Completo
CodeToMakeSpatiotemporalPredictions.pdf
Codi.pdf
Solicita copia
Al rellenar este formulario estáis solicitando una copia del artículo, depositado en el repositorio institucional (DUGiDocs), a su autor o al autor principal del artículo. Será el mismo autor quien decidirá enviar una copia del documento a quien lo solicite si lo considera oportuno. En todo caso, la Biblioteca de la UdG no interviene en este proceso ya que no está autorizada a facilitar artículos cuando éstos son de acceso restringido.
Compartir
Our objective with this code is to present a hierarchical Bayesian spatiotemporal model that allows us to make spatial and temporal predictions of the levels of air pollutants and meteorological variables, efficiently and with very little computational cost. We specify a hierarchical spatiotemporal model using stochastic partial differential equations (SPDEs) of the integrated Laplace approximation (INLA). Our model allows us to make quite accurate spatial and temporal predictions of short- and long-term exposure to air pollutants and meteorological variables with a relatively low density of monitoring stations and with a much lower computation time. The only requirements of our method are a minimum number of stations distributed throughout the territory where the predictions are to be made and that the spatial and temporal dimensions are independent or separable
Tots els drets reservats