Code to make spatio-temporal predictions of air pollutant levels and meteorological variables, based on data observed at monitoring and meteorological stations

Full Text
CodeToMakeSpatiotemporalPredictions.pdf embargoed access Codi.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Share
Our objective with this code is to present a hierarchical Bayesian spatiotemporal model that allows us to make spatial and temporal predictions of the levels of air pollutants and meteorological variables, efficiently and with very little computational cost. We specify a hierarchical spatiotemporal model using stochastic partial differential equations (SPDEs) of the integrated Laplace approximation (INLA). Our model allows us to make quite accurate spatial and temporal predictions of short- and long-term exposure to air pollutants and meteorological variables with a relatively low density of monitoring stations and with a much lower computation time. The only requirements of our method are a minimum number of stations distributed throughout the territory where the predictions are to be made and that the spatial and temporal dimensions are independent or separable ​
​Tots els drets reservats