Code to make spatio-temporal predictions of air pollutant levels and meteorological variables, based on data observed at monitoring and meteorological stations

Text Complet
CodeToMakeSpatiotemporalPredictions.pdf embargoed access Codi.pdf embargoed access
Sol·licita còpia a l'autor de l'article
En omplir aquest formulari esteu demanant una còpia de l'article dipositat al repositori institucional (DUGiDocs) al seu autor o a l'autor principal de l'article. Serà el mateix autor qui decideixi lliurar una còpia del document a qui ho sol•liciti si ho creu convenient. En tot cas, la Biblioteca de la UdG no intervé en aquest procés ja que no està autoritzada a facilitar articles quan aquests són d'accés restringit.
Compartir
Our objective with this code is to present a hierarchical Bayesian spatiotemporal model that allows us to make spatial and temporal predictions of the levels of air pollutants and meteorological variables, efficiently and with very little computational cost. We specify a hierarchical spatiotemporal model using stochastic partial differential equations (SPDEs) of the integrated Laplace approximation (INLA). Our model allows us to make quite accurate spatial and temporal predictions of short- and long-term exposure to air pollutants and meteorological variables with a relatively low density of monitoring stations and with a much lower computation time. The only requirements of our method are a minimum number of stations distributed throughout the territory where the predictions are to be made and that the spatial and temporal dimensions are independent or separable ​
​Tots els drets reservats