Feasible application of thermoelectric generators in light aviation

Compartir
Energy consumption in aviation is steadily increasing, requiring new technological solutions to reduce emissions and enhance sustainability. To address energy and emission challenges, researchers are exploring thermoelectric devices for thermal energy recovery and direct conversion into electricity. In this study a comprehensive model of the Rotax 912 ULS engine (R912) is implemented using GT-suite software. Through the simulations we estimate exhaust gas temperatures to be used for electrical production using a thermoelectric generator (TEG). The methodology used comprises a set of one dimensional simulations, validated with manufacturer and experimental data. The simulations served to analyze the performance of the engine after coupling the TEG to the exhaust system, and to estimate the electrical power production, under several working conditions. The findings aim to evaluate the feasibility of replacing the engine's alternator with a TEG, potentially reducing aircraft weight, and increasing flight autonomy and range in the field of light aviation ​
Este documento está sujeto a una licencia Creative Commons:Reconocimiento (by) Creative Commons by4.0