Low time complexity algorithms for path computation in Cayley Graphs
dc.contributor.author
dc.date.accessioned
2025-01-30T10:07:12Z
dc.date.available
2025-01-30T10:07:13Z
dc.date.issued
2019-04-30
dc.identifier.issn
0166-218X
dc.identifier.uri
dc.description.abstract
We study the problem of path computation in Cayley Graphs (CG) from an approach of word processing in groups. This approach consists in encoding the topological structure of CG in an automaton called Diff, then techniques of word processing are applied for computing the shortest paths. We present algorithms for computing the K-shortest paths, the shortest disjoint paths and the shortest path avoiding a set of nodes and edges. For any CG with diameter D, the time complexity of the proposed algorithms is O(KD|Diff|), where |Diff| denotes the size of Diff. We show that our proposal outperforms the state of art of topology-agnostic algorithms for disjoint shortest paths and stays competitive with respect to proposals for specific families of CG. Therefore, the proposed algorithms set a base in the design of adaptive and low-complexity routing schemes for networks whose interconnections are defined by CG
dc.format.extent
8 p.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.relation.isformatof
Versió postprint del document publicat a: https://doi.org/10.1016/j.dam.2018.12.005
dc.relation.ispartof
© Discrete Applied Mathematics, 2019, vol. 259, p. 218-225
dc.relation.ispartofseries
Articles publicats (D-ATC)
dc.rights
Tots els drets reservats
dc.source
Aguirre Guerrero, Daniela Ducoffe, Guillaume Fàbrega i Soler, Lluís Vilà Talleda, Pere Coudert, David 2019 Low time complexity algorithms for path computation in Cayley Graphs Discrete Applied Mathematics 259 218 225
dc.title
Low time complexity algorithms for path computation in Cayley Graphs
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.type.version
info:eu-repo/semantics/acceptedVersion
dc.identifier.doi
dc.identifier.idgrec
029587
dc.type.peerreviewed
peer-reviewed
dc.identifier.eissn
1872-6771