Autonomous Underwater Vehicle Docking Under Realistic Assumptions Using Deep Reinforcement Learning
dc.contributor.author
dc.date.accessioned
2024-12-09T08:35:24Z
dc.date.available
2024-12-09T08:35:24Z
dc.date.issued
2024-11-13
dc.identifier.uri
dc.description.abstract
This paper addresses the challenge of docking an Autonomous Underwater Vehicle (AUV) under realistic conditions. Traditional model-based controllers are often constrained by the complexity and variability of the ocean environment. To overcome these limitations, we propose a Deep Reinforcement Learning (DRL) approach to manage the homing and docking maneuver. First, we define the proposed docking task in terms of its observations, actions, and reward function, aiming to bridge the gap between theoretical DRL research and docking algorithms tested on real vehicles. Additionally, we introduce a novel observation space that combines raw noisy observations with filtered data obtained using an Extended Kalman Filter (EKF). We demonstrate the effectiveness of this approach through simulations with various DRL algorithms, showing that the proposed observations can produce stable policies in fewer learning steps, outperforming not only traditional control methods but also policies obtained by the same DRL algorithms in noise-free environments
dc.description.sponsorship
Work on this article has been supported by the PLOME project (Ref. PLEC2021-007525/AEI/10.13039/501100011033), and the COOPERAMOS-Cooperative Persistent RobotS for Autonomous ManipulatiOn Subsea projectv (Ref. PID2020-115332RB-C32)
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
MDPI (Multidisciplinary Digital Publishing Institute)
dc.relation
PLEC2021-007525
PID2020-115332RB-C32
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.3390/drones8110673
dc.relation.ispartof
Drones, 2024, vol. 8, núm. 11, p. 673
dc.relation.ispartofseries
Articles publicats (D-ATC)
dc.rights
Attribution 4.0 International
dc.rights.uri
dc.subject
dc.title
Autonomous Underwater Vehicle Docking Under Realistic Assumptions Using Deep Reinforcement Learning
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.relation.projectID
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PLEC2021-007525/ES/PLOME: Plataforma de Larga Duración para la Observación de los Ecosistemas Marinos/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115332RB-C32/ES/DESPLIEGUE PERMANENTE DE VEHICULOS SUBMARINOS AUTONOMOS BI-MANUALES PARA LA INTERVENCION/
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.contributor.funder
dc.type.peerreviewed
peer-reviewed
dc.relation.FundingProgramme
dc.relation.ProjectAcronym
dc.identifier.eissn
2504-446X