Hematoma expansion prediction in intracerebral hemorrhage patients by using synthesized CT images in an end-to-end deep learning framework
dc.contributor.author
dc.date.accessioned
2024-09-23T07:44:07Z
dc.date.available
2024-09-23T07:44:07Z
dc.date.issued
2024-10-01
dc.identifier.issn
0895-6111
dc.identifier.uri
dc.description.abstract
Spontaneous intracerebral hemorrhage (ICH) is a type of stroke less prevalent than ischemic stroke but associated with high mortality rates. Hematoma expansion (HE) is an increase in the bleeding that affects 30%–38% of hemorrhagic stroke patients. It is observed within 24 h of onset and associated with patient worsening. Clinically it is relevant to detect the patients that will develop HE from their initial computed tomography (CT) scans which could improve patient management and treatment decisions. However, this is a significant challenge due to the predictive nature of the task and its low prevalence, which hinders the availability of large datasets with the required longitudinal information. In this work, we present an end-to-end deep learning framework capable of predicting which cases will exhibit HE using only the initial basal image. We introduce a deep learning framework based on the 2D EfficientNet B0 model to predict the occurrence of HE using initial non-contrasted CT scans and their corresponding lesion annotation as priors. We used an in-house acquired dataset of 122 ICH patients, including 35 HE cases, containing longitudinal CT scans with manual lesion annotations in both basal and follow-up (obtained within 24 h after the basal scan). Experiments were conducted using a 5-fold cross-validation strategy. We addressed the limited data problem by incorporating synthetic images into the training process. To the best of our knowledge, our approach is novel in the field of HE prediction, being the first to use image synthesis to enhance results. We studied different scenarios such as training only with the original scans, using standard image augmentation techniques, and using synthetic image generation. The best performance was achieved by adding five generated versions of each image, along with standard data augmentation, during the training process. This significantly improved (p=0.0003) the performance obtained with our baseline model using directly the original CT scans from an Accuracy of 0.56 to 0.84, F1-Score of 0.53 to 0.82, Sensitivity of 0.51 to 0.77, and Specificity of 0.60 to 0.91, respectively. The proposed approach shows promising results in predicting HE, especially with the inclusion of synthetically generated images. The obtained results highlight the significance of this research direction, which has the potential to improve the clinical management of patients with hemorrhagic stroke. The code is available at: https://github.com/NIC-VICOROB/HE-prediction-SynthCT
dc.description.sponsorship
Cansu Yalcin té una beca FI de la Generalitat de Catalunya amb número de referència
2023 FI-1 00096. Valeriia Abramova té una beca FPI del Ministeri de Ciència, Innovació i Universidades, Espanya amb número de referència PRE2021-099121. Aquest treball ha comptat amb el suport de DPI2020-114769RB-I00 i PID2023-146187OB-I00 del Ministerio de Ciencia e Innovación, Espanya
Finançament d'accés obert gràcies a l'acord CRUE-CSIC amb Elsevier
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.1016/j.compmedimag.2024.102430
dc.relation.ispartof
Computerized Medical Imaging and Graphics, 2024, vol. 117, art. núm. 102430
dc.relation.ispartofseries
Articles publicats (D-ATC)
dc.rights
Attribution-NonCommercial 4.0 International
dc.rights.uri
dc.subject
dc.title
Hematoma expansion prediction in intracerebral hemorrhage patients by using synthesized CT images in an end-to-end deep learning framework
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.relation.projectID
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114769RB-I00/ES/MODELOS PARA LA ESCLEROSIS MULTIPLE USANDO DEEP LEARNING EN DATOS RADIOLOGICOS, CLINICOS Y DE LABORATORIO/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2023-146187OB-I00/ES/TECNICAS AVANZADAS DE APRENDIZAJE PROFUNDO PARA EL DESARROLLO DE HERRAMIENTAS DE NEUROIMAGEN/
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.identifier.idgrec
039125
dc.contributor.funder
dc.type.peerreviewed
peer-reviewed
dc.relation.FundingProgramme
dc.relation.ProjectAcronym
dc.identifier.eissn
1879-0771