Generation of a network slicing dataset: The foundations for AI-based B5G resource management
dc.contributor.author
dc.date.accessioned
2024-07-29T10:21:10Z
dc.date.available
2024-07-29T10:21:10Z
dc.date.issued
2024-08
dc.identifier.uri
dc.description.abstract
This paper presents a comprehensive network slicing dataset designed to empower artificial intelligence (AI), and data-based performance prediction applications, in 5G and beyond (B5G) networks. The dataset, generated through a packet-level simulator, captures the complexities of network slicing considering the three main network slice types defined by 3GPP: Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communications (URLLC), and Massive Internet of Things (mIoT). It includes a wide range of network scenarios with varying topologies, slice instances, and traffic flows. The included scenarios consist of transport networks, excluding the Radio Access Network (RAN) infrastructure. Each sample consists of pairs of a network scenario and the associated performance metrics: the network configuration includes network topology, traffic characteristics, routing configurations, while the performance metrics are the delay, jitter, and loss for each flow. The dataset is generated with a custom network slicing admission control module, enabling the simulation of scenarios in multiple situations of over and underprovisioning. This network slicing dataset is a valuable asset for the research community, unlocking opportunities for innovations in 5G and B5G networks
dc.description.sponsorship
This project has received funding from the Red temática Go2Edge (Ref.: RED2018-102585-T), from the Ajut Pont UdG 2020/23 and Generalitat de Catalunya through Consolidated Research Group 2017-SGR-1318 and 2017-SGR-1552, the Secretaria d'Universitats i Recerca del Departament d'Empresa i Coneixement de la Generalitat de Catalunya for the FI-SDUR fellowship funding 2020 FISDU00590 assigned to Miquel Farreras. Jordi Paillisse is funded by European Union-Next Generation EU, Ministry of Universities and Recovery, Transformation and Resilience Plan, through a call from Universitat Politècnica de Catalunya (Grant Ref. 2022UPC-MSC-93871)
Open Access funding provided thanks to the CRUE-CSIC agreement with Elsevier
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.1016/j.dib.2024.110738
dc.relation.ispartof
Data in Brief, 2024, vol. 55, art. núm. 110738
dc.relation.ispartofseries
Articles publicats (D-ATC)
dc.rights
Attribution 4.0 International
dc.rights.uri
dc.subject
dc.title
Generation of a network slicing dataset: The foundations for AI-based B5G resource management
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.identifier.idgrec
039025
dc.type.peerreviewed
peer-reviewed
dc.identifier.eissn
2352-3409