An End-to-End Deep Learning Framework for Predicting Hematoma Expansion in Hemorrhagic Stroke Patients from CT Images
dc.contributor.author
dc.date.accessioned
2024-05-13T07:58:14Z
dc.date.available
2024-05-13T07:58:14Z
dc.date.issued
2024-03-23
dc.identifier.uri
dc.description.abstract
Hematoma expansion (HE) occurs in 20% of patients with hemorrhagic stroke within 24 h of onset, and it is associated with a poorer patient outcome. From a clinical point of view, predicting HE from the initial patient computed tomography (CT) image is useful to improve therapeutic decisions and minimize prognosis errors. In this work, we propose an end-to-end deep learning framework for predicting the final hematoma expansion and its corresponding lesion mask. We also explore the problem of having limited data and propose to augment the available dataset with synthetic images. The obtained results show an improved HE prediction when incorporating the use of synthetic images into the model, with a mean Dice score of the HE growth area of 0.506
and an average prediction error in hematoma volume of −3.44
mL. The proposed approach achieved results in line with state-of-the-art methods with far fewer data by using synthetic image generation and without requiring the inclusion of patient clinical data
dc.description.sponsorship
Valeriia Abramova received an FPI grant from Ministerio de Ciencia, Innovación y Universidades with reference number PRE2021-099121. This work was supported under DPI2020-114769RB-I00 from Ministerio de Ciencia, Innovación y Universidades and also by the ICREA Academia program
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
MDPI (Multidisciplinary Digital Publishing Institute)
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.3390/app14072708
dc.relation.ispartof
Applied Sciences, 2024, vol. 14, núm. 7, p. 2708
dc.relation.ispartofseries
Articles publicats (D-ATC)
dc.rights
Attribution 4.0 International
dc.rights.uri
dc.subject
dc.title
An End-to-End Deep Learning Framework for Predicting Hematoma Expansion in Hemorrhagic Stroke Patients from CT Images
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.relation.projectID
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114769RB-I00/ES/MODELOS PARA LA ESCLEROSIS MULTIPLE USANDO DEEP LEARNING EN DATOS RADIOLOGICOS, CLINICOS Y DE LABORATORIO/
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.contributor.funder
dc.type.peerreviewed
peer-reviewed
dc.relation.FundingProgramme
dc.relation.ProjectAcronym
dc.identifier.eissn
2076-3417