MAM-E: Mammographic synthetic image generation with diffusion models
dc.contributor.author
dc.date.accessioned
2024-04-19T06:17:55Z
dc.date.available
2024-04-19T06:17:55Z
dc.date.issued
2024-03-24
dc.identifier.uri
dc.description.abstract
Generative models are used as an alternative data augmentation technique to alleviate the data scarcity problem faced in the medical imaging field. Diffusion models have gathered special attention due to their innovative generation approach, the high quality of the generated images, and their relatively less complex training process compared with Generative Adversarial Networks. Still, the implementation of such models in the medical domain remains at an early stage. In this work, we propose exploring the use of diffusion models for the generation of high-quality, full-field digital mammograms using state-of-the-art conditional diffusion pipelines. Additionally, we propose using stable diffusion models for the inpainting of synthetic mass-like lesions on healthy mammograms. We introduce MAM-E, a pipeline of generative models for high-quality mammography synthesis controlled by a text prompt and capable of generating synthetic mass-like lesions on specific regions of the breast. Finally, we provide quantitative and qualitative assessment of the generated images and easy-to-use graphical user interfaces for mammography synthesis
dc.description.sponsorship
This research was possible thanks to funding for the Erasmus+: Erasmus Mundus Joint Master’s Degree (EMJMD) scholarship (2021–2023), with project reference 610600-EPP-1-2019-1-ES-EPPKA1-JMD-MOB, the project VICTORIA, “PID2021-123390OB-C21” from the Ministerio de Ciencia e Innovación of Spain, and the Joan Oró grant for the hiring of pre-doctoral research staff in training (2023) “ref. BDNS 657443” from the Government of Catalonia
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
MDPI (Multidisciplinary Digital Publishing Institute)
dc.relation
PID2021-123390OB-C21
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.3390/s24072076
dc.relation.ispartof
Sensors, 2024, vol. 24, núm. 7, p. 2976
dc.relation.ispartofseries
Articles publicats (D-ATC)
dc.rights
Attribution 4.0 International (CC BY 4.0)
dc.rights.uri
dc.source
Montoya-del-Angel, Ricardo Sam-Millan, Karla Vilanova, Joan Carles Martí Marly, Robert 2024 MAM-E: Mammographic synthetic image generation with diffusion models Sensors 24 7 2976
dc.subject
dc.title
MAM-E: Mammographic synthetic image generation with diffusion models
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.relation.projectID
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123390OB-C21/ES/ENSAYOS CLÍNICOS VIRTUALES PARA ALGORITMOS DE IA EXPLICABLE EN EL CÁNCER DE MAMA/
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.identifier.idgrec
038584
dc.contributor.funder
dc.type.peerreviewed
peer-reviewed
dc.relation.FundingProgramme
dc.relation.ProjectAcronym
dc.identifier.eissn
1424-8220
dc.identifier.PMID
38610288
dc.identifier.PMCID
PMC11014323