Brickognize: Applying Photo-Realistic Image Synthesis for Lego Bricks Recognition with Limited Data
dc.contributor.author
dc.date.accessioned
2023-03-17T10:45:12Z
dc.date.available
2023-03-17T10:45:12Z
dc.date.issued
2023-02-08
dc.identifier.uri
dc.description.abstract
During the last few years, supervised deep convolutional neural networks have become the state-of-the-art for image recognition tasks. Nevertheless, their performance is severely linked to the amount and quality of the training data. Acquiring and labeling data is a major challenge that limits their expansion to new applications, especially with limited data. Recognition of Lego bricks is a clear example of a real-world deep learning application that has been limited by the difficulties associated with data gathering and training. In this work, photo-realistic image synthesis and few-shot fine-tuning are proposed to overcome limited data in the context of Lego bricks recognition. Using synthetic images and a limited set of 20 real-world images from a controlled environment, the proposed system is evaluated on controlled and uncontrolled real-world testing datasets. Results show the good performance of the synthetically generated data and how limited data from a controlled domain can be successfully used for the few-shot fine-tuning of the synthetic training without a perceptible narrowing of its domain. Obtained results reach an AP50 value of 91.33% for uncontrolled scenarios and 98.7% for controlled ones
dc.description.sponsorship
R.M. and J.V. have been partially funded by the Spanish Science and Innovation projects PID2021-123390OB-C21 and RTI2018-096333-B-I00
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
MDPI (Multidisciplinary Digital Publishing Institute)
dc.relation
RTI2018-096333-B-I00
PID2021-123390OB-C21
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.3390/s23041898
dc.relation.ispartof
Sensors, 2023, vol. 23, núm. 4, p.1898
dc.relation.ispartofseries
Articles publicats (D-ATC)
dc.rights
Attribution 4.0 International
dc.rights.uri
dc.subject
dc.title
Brickognize: Applying Photo-Realistic Image Synthesis for Lego Bricks Recognition with Limited Data
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.relation.projectID
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096333-B-I00/ES/COMPUTACION DE LA IMAGEN PARA LA MEJORA DE LA RADIOMICA DEL CANCER DE MAMA/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123390OB-C21/ES/ENSAYOS CLÍNICOS VIRTUALES PARA ALGORITMOS DE IA EXPLICABLE EN EL CÁNCER DE MAMA/
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.contributor.funder
dc.type.peerreviewed
peer-reviewed
dc.relation.FundingProgramme
dc.relation.ProjectAcronym
dc.identifier.eissn
1424-8220