Acute ischemic stroke lesion core segmentation in CT perfusion images using fully convolutional neural networks
dc.contributor.author
dc.date.accessioned
2020-01-27T13:43:01Z
dc.date.available
2020-01-27T13:43:01Z
dc.date.issued
2019-12-01
dc.identifier.issn
0010-4825
dc.identifier.uri
dc.description.abstract
The use of Computed Tomography (CT) imaging for patients with stroke symptoms is an essential step for triaging and diagnosis in many hospitals. However, the subtle expression of ischemia in acute CT images has made it hard for automated methods to extract potentially quantifiable information. In this work, we present and evaluate an automated deep learning tool for acute stroke lesion core segmentation from CT and CT perfusion images. For evaluation, the Ischemic Stroke Lesion Segmentation (ISLES) 2018 challenge dataset is used that includes 94 cases for training and 62 for testing. The presented method is an improved version of our workshop challenge approach that was ranked among the workshop challenge finalists. The introduced contributions include a more regularized network training procedure, symmetric modality augmentation and uncertainty filtering. Each of these steps is quantitatively evaluated by cross-validation on the training set. Moreover, our proposal is evaluated against other state-of-the-art methods with a blind testing set evaluation using the challenge website, which maintains an ongoing leaderboard for fair and direct method comparison. The tool reaches competitive performance ranking among the top performing methods of the ISLES 2018 testing leaderboard with an average Dice similarity coefficient of 49%. In the clinical setting, this method can provide an estimate of lesion core size and location without performing time costly magnetic resonance imaging. The presented tool is made publicly available for the research community
dc.description.sponsorship
Albert Clèrigues holds an FPI grant from the Ministerio de Ciencia,
Innovación y Universidades with reference number PRE2018-
083507. This work has been partially supported by Retos de Investigación
TIN2015-73563-JIN and DPI2017-86696-R from the Ministerio
de Ciencia, Innovación y Universidades
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.relation
info:eu-repo/grantAgreement/MINECO//TIN2015-73563-JIN/ES/SEGMENTACION AUTOMATICA DE LAS ESTRUCTURAS CEREBRALES PARA SU USO COMO BIOMARCADORES DE IMAGEN/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-86696-R/ES/MODELOS PREDICTIVOS PARA LA ESCLEROSIS MULTIPE USANDO BIOMARCADORES DE RESONANCIA MAGNETICA DEL CEREBRO/
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.1016/j.compbiomed.2019.103487
dc.relation.ispartof
© Computers in Biology and Medicine, 2019, vol. 115, p.103487
dc.relation.ispartofseries
Articles publicats (D-ATC)
dc.rights
Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri
dc.subject
dc.title
Acute ischemic stroke lesion core segmentation in CT perfusion images using fully convolutional neural networks
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.contributor.funder
dc.type.peerreviewed
peer-reviewed
dc.relation.FundingProgramme
dc.relation.ProjectAcronym