Supervised Domain Adaptation for Automatic Sub-cortical Brain Structure Segmentation with Minimal User Interaction
dc.contributor.author
dc.date.accessioned
2019-11-22T12:57:24Z
dc.date.available
2019-11-22T12:57:24Z
dc.date.issued
2019-05-01
dc.identifier.issn
2045-2322
dc.identifier.uri
dc.description.abstract
In recent years, some convolutional neural networks (CNNs) have been proposed to segment sub-cortical brain structures from magnetic resonance images (MRIs). Although these methods provide accurate segmentation, there is a reproducibility issue regarding segmenting MRI volumes from different image domains – e.g., differences in protocol, scanner, and intensity profile. Thus, the network must be retrained from scratch to perform similarly in different imaging domains, limiting the applicability of such methods in clinical settings. In this paper, we employ the transfer learning strategy to solve the domain shift problem. We reduced the number of training images by leveraging the knowledge obtained by a pretrained network, and improved the training speed by reducing the number of trainable parameters of the CNN. We tested our method on two publicly available datasets – MICCAI 2012 and IBSR – and compared them with a commonly used approach: FIRST. Our method showed similar results to those obtained by a fully trained CNN, and our method used a remarkably smaller number of images from the target domain. Moreover, training the network with only one image from MICCAI 2012 and three images from IBSR datasets was sufficient to significantly outperform FIRST with (p < 0.001) and (p < 0.05), respectively
dc.description.sponsorship
Kaisar Kushibar and Jose Bernal hold FI-DGR2017 grant from the Catalan Government with reference numbers 2017FI_B00372 and 2017FI_B00476, respectively. This work has been partially supported by La Fundació la Marató de TV3, by Retos de Investigación TIN2014-55710-R, TIN2015-73563-JIN, and DPI2017-86696-R from the Ministerio de Ciencia y Tecnologia
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Nature Publishing Group
dc.relation
info:eu-repo/grantAgreement/MINECO//TIN2014-55710-R/ES/HERRAMIENTAS DE NEUROIMAGEN PARA MEJORAR EL DIAGNOSIS Y EL SEGUIMIENTO CLINICO DE LOS PACIENTES CON ESCLEROSIS MULTIPLE/
info:eu-repo/grantAgreement/MINECO//TIN2015-73563-JIN/ES/SEGMENTACION AUTOMATICA DE LAS ESTRUCTURAS CEREBRALES PARA SU USO COMO BIOMARCADORES DE IMAGEN/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-86696-R/ES/MODELOS PREDICTIVOS PARA LA ESCLEROSIS MULTIPE USANDO BIOMARCADORES DE RESONANCIA MAGNETICA DEL CEREBRO/
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.1038/s41598-019-43299-z
dc.relation.ispartof
Scientific Reports, 2019, vol.9, art.núm. 6742
dc.relation.ispartofseries
Articles publicats (D-ATC)
dc.rights
Attribution 4.0 International
dc.rights.uri
dc.subject
dc.title
Supervised Domain Adaptation for Automatic Sub-cortical Brain Structure Segmentation with Minimal User Interaction
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.identifier.idgrec
029838
dc.contributor.funder
dc.type.peerreviewed
peer-reviewed
dc.relation.FundingProgramme
dc.relation.ProjectAcronym