Modelling and analysis of longitudinal thermoelectric energy harvesters considering series-parallel interconnection effect

Full Text
Modelling-and-analysis.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Share
This work improves the accuracy of longitudinal thermoelectric energy harvesting (LTEH) models introducing the prediction of the interconnection effects. LTEHs are composed of multiple arrays of thermoelectric generators (TEG) electrically arranged in series-parallel configuration. The way that TEG modules are connected strongly affects the electro-thermal outputs of each module and the whole harvester as well. In this paper, a new computational model capable to simulate the electro-thermal dynamics of a longitudinal thermoelectric energy harvester have been developed. It is composed of an array of interconnected TEG modules, which, at the same time, can be disposed thermally and electrically in different series-parallel configurations. The comparison of results between theoretical and experimental data shows great accuracy and the possibility to be used as a simulation tool. The root mean square errors RMSE for electrical power generated and system efficiency are 2.9 mW and 2.15 × 10 −4 %. Additionally, the normalized root mean square errors NRMSE are 0.75% and 0.52% ​
​Tots els drets reservats