Optimization of composite stiffened panels under mechanical and hygrothermal loads using neural networks and genetic algorithms

Full Text
Optimization-of-composite.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Share
The present work develops an optimization procedure for a geometric design of a composite material stiffened panel with conventional stacking sequence using static analysis and hygrothermal effects. The procedure is based on a global approach strategy, composed by two steps: first, the response of the panel is obtained by a neural network system using the results of finite element analyses and, in a second step, a multi-objective optimization problem is solved using a genetic algorithm. The neural network implemented in the first step uses a sub-problem approach which allows to consider different temperature ranges. The compression load and relative humidity of the air are assumed to be constants throughout the considered temperature range.The mass, the hygrothermal expansion and the stresses between the skin and the stiffeners are defined as the optimality criteria. The presented optimization procedure is shown to yield the optimal structure design without compromising the computational efficiency ​
​Tots els drets reservats