A parallel GPU-based approach for reporting flock patterns

Texto Completo
A-parallel-GPU-based.pdf embargoed access
Solicita copia
Al rellenar este formulario estáis solicitando una copia del artículo, depositado en el repositorio institucional (DUGiDocs), a su autor o al autor principal del artículo. Será el mismo autor quien decidirá enviar una copia del documento a quien lo solicite si lo considera oportuno. En todo caso, la Biblioteca de la UdG no interviene en este proceso ya que no está autorizada a facilitar artículos cuando éstos son de acceso restringido.
Compartir
Data analysis and knowledge discovery in trajectory databases is an emerging field with a growing number of applications such as managing traffic, planning tourism infrastructures or better understanding wildlife. In this paper, we study the problem of finding flock patterns in trajectory databases. A flock refers to a large enough subset of entities that move close to each other for, at least, a given time interval. We present parallel algorithms, to be run on a Graphics Processing Unit, for reporting three different variants of the flock pattern: (1) all maximal flocks, (2) the largest flock and (3) the longest flock. We also provide their complexity analysis together with experimental results showing the efficiency and scalability of our approach ​
​Tots els drets reservats