A parallel GPU-based approach for reporting flock patterns
dc.contributor.author
dc.date.accessioned
2017-03-15T08:56:15Z
dc.date.available
2017-03-15T08:56:15Z
dc.date.issued
2014-06-05
dc.identifier.issn
1365-8816
dc.identifier.uri
dc.description.abstract
Data analysis and knowledge discovery in trajectory databases is an emerging field with a growing number of applications such as managing traffic, planning tourism infrastructures or better understanding wildlife. In this paper, we study the problem of finding flock patterns in trajectory databases. A flock refers to a large enough subset of entities that move close to each other for, at least, a given time interval. We present parallel algorithms, to be run on a Graphics Processing Unit, for reporting three different variants of the flock pattern: (1) all maximal flocks, (2) the largest flock and (3) the longest flock. We also provide their complexity analysis together with experimental results showing the efficiency and scalability of our approach
dc.description.sponsorship
Work partially supported by the Spanish Ministerio de Ciencia e Innovación [TIN2010-20590-C02-02]
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Taylor and Francis
dc.relation
info:eu-repo/grantAgreement/MICINN//TIN2010-20590-C02-02/ES/AVANCES EN REALIDAD VIRTUAL PARA APLICACIONES PUNTERAS-UDG/
dc.relation.isformatof
Reproducció digital del document publicat a: http://dx.doi.org/10.1080/13658816.2014.902949
dc.relation.ispartof
© International Journal of Geographical Information Science, 2014, vol. 28, núm. 9, p. 1877-1903
dc.relation.ispartofseries
Articles publicats (D-IMA)
dc.rights
Tots els drets reservats
dc.subject
dc.title
A parallel GPU-based approach for reporting flock patterns
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/embargoedAccess
dc.embargo.terms
Cap
dc.date.embargoEndDate
info:eu-repo/date/embargoEnd/2026-01-01
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.identifier.idgrec
021913
dc.contributor.funder
dc.relation.ProjectAcronym
dc.identifier.eissn
1365-8824