Electrically tunable thermal conductivity in thermoelectric materials: Active and passive control

Full Text
Electrically-tunable-thermal.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Share
Applications involving the use of thermoelectric materials can be found in many different areas ranging from thermocouple sensors, portable coolers, to solar power generators. Generally, they can be subdivided by the direction of energy conversion. While the Peltier effect is used in solid-state refrigeration, the Seebeck effect is responsible for the conversion of temperature gradients into electrical voltage in energy harvesting systems. However, this paper proposes a novel approach to the use of thermoelectric couples, treating them as variable insulators in thermal systems. Here, we demonstrate that thermal conductivity in thermoelectric materials can be externally controlled by electrical parameters such as electrical load or DC voltage in passive and active systems, respectively. Active mode is a good solution when a complete insulation or a high control of thermal conductivity is needed. Passive mode permits a thermal conductivity increment of 1. +. ZTtimes with respect to semiconductor initial thermal conductivity. Results open new doors and new opportunities for thermoelectric materials ​
​Tots els drets reservats