Tsallis entropy-based information measures for shot boundary detection and keyframe selection

Texto Completo
Tsallis-entropy-based.pdf embargoed access
Solicita copia
Al rellenar este formulario estáis solicitando una copia del artículo, depositado en el repositorio institucional (DUGiDocs), a su autor o al autor principal del artículo. Será el mismo autor quien decidirá enviar una copia del documento a quien lo solicite si lo considera oportuno. En todo caso, la Biblioteca de la UdG no interviene en este proceso ya que no está autorizada a facilitar artículos cuando éstos son de acceso restringido.
Compartir
Automatic shot boundary detection and keyframe selection constitute major goals in video processing. We propose two different information-theoretic approaches to detect the abrupt shot boundaries of a video sequence. These approaches are, respectively, based on two information measures, Tsallis mutual information and Jensen-Tsallis divergence, that are used to quantify the similarity between two frames. Both measures are also used to find out the most representative keyframe of each shot. The representativeness of a frame is basically given by its average similarity with respect to the other frames of the shot. Several experiments analyze the behavior of the proposed measures for different color spaces (RGB, HSV, and Lab), regular binnings, and entropic indices. In particular, the Tsallis mutual information for the HSV and Lab color spaces with only 8 regular bins for each color component and an entropic index between 1. 5 and 1. 8 substantially improve the performance of previously proposed methods based on mutual information and Jensen-Shannon divergence ​
​Tots els drets reservats