Tsallis entropy-based information measures for shot boundary detection and keyframe selection

Full Text
Tsallis-entropy-based.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Share
Automatic shot boundary detection and keyframe selection constitute major goals in video processing. We propose two different information-theoretic approaches to detect the abrupt shot boundaries of a video sequence. These approaches are, respectively, based on two information measures, Tsallis mutual information and Jensen-Tsallis divergence, that are used to quantify the similarity between two frames. Both measures are also used to find out the most representative keyframe of each shot. The representativeness of a frame is basically given by its average similarity with respect to the other frames of the shot. Several experiments analyze the behavior of the proposed measures for different color spaces (RGB, HSV, and Lab), regular binnings, and entropic indices. In particular, the Tsallis mutual information for the HSV and Lab color spaces with only 8 regular bins for each color component and an entropic index between 1. 5 and 1. 8 substantially improve the performance of previously proposed methods based on mutual information and Jensen-Shannon divergence ​
​Tots els drets reservats