SLAM with SC-PHD filters: an underwater vehicle application

Text Complet
SLAM-C-PHD.pdf closed access
Sol·licita còpia a l'autor de l'article
En omplir aquest formulari esteu demanant una còpia de l'article dipositat al repositori institucional (DUGiDocs) al seu autor o a l'autor principal de l'article. Serà el mateix autor qui decideixi lliurar una còpia del document a qui ho sol•liciti si ho creu convenient. En tot cas, la Biblioteca de la UdG no intervé en aquest procés ja que no està autoritzada a facilitar articles quan aquests són d'accés restringit.
Compartir
The random finite-set formulation for multiobject estimation provides a means of estimating the number of objects in cluttered environments with missed detections within a unified probabilistic framework. This methodology is now becoming the dominant mathematical framework within the sensor fusion community for developing multiple-target tracking algorithms. These techniques are also gaining traction in the field of feature-based simultaneous localization and mapping (SLAM) for mobile robotics. Here, we present one such instance of this approach with an underwater vehicle using a hierarchical multiobject estimation method for estimating both landmarks and vehicle position ​
​Tots els drets reservats