Optimization of process parameters for pulsed laser milling of micro-channels on AISI H13 tool steel

Full Text
Optimization-process-parameters.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Share
This paper focuses on understanding the influence of laser milling process parameters on the final geometrical and surface quality of micro-channel features fabricated on AISI H13 steel. Optimal selection of process parameters is highly critical for successful material removal and high dimensional and surface quality for micro-sized die/mold applications. A set of designed experiments is carried out in a pulsed Nd:YAG laser milling system using AISI H13 hardened tool steel as work material. Arrays of micro-channels have been fabricated using a range of process parameters such as scanning speed (SS), pulse intensity (PI), and pulse frequency (PF). The relation between process parameters and quality characteristics has been studied with experimental modeling. Multi-criteria decision making for material and process parameter selection for desired surface quality and dimensional accuracy is investigated using an evolutionary computation method based on particle swarm optimization (PSO) ​
​Tots els drets reservats