The minimum tree for a given zero-entropy period
dc.contributor.author
dc.date.accessioned
2014-03-24T14:07:12Z
dc.date.available
2014-03-24T14:07:12Z
dc.date.issued
2005
dc.identifier.issn
0161-1712
dc.identifier.uri
dc.description.abstract
We answer the following question: given any n∈ℕ, which is the minimum number of endpoints en of a tree admitting a zero-entropy map f with a periodic orbit of period n? We prove that en=s1s2…sk−∑i=2ksisi+1…sk, where n=s1s2…sk is the decomposition of n into a product of primes such that si≤si+1 for 1≤i<k. As a corollary, we get a criterion to decide whether a map f defined on a tree with e endpoints has positive entropy: if f has a periodic orbit of period m with em>e, then the topological entropy of f is positive
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Hindawi Publishing Corporation
dc.relation.isformatof
Reproducció digital del document publicat a: http://dx.doi.org/10.1155/IJMMS.2005.3025
dc.relation.ispartof
International Journal of Mathematics and Mathematical Sciences, 2005, núm. 19, p. 3025-3033
dc.relation.ispartofseries
Articles publicats (D-IMA)
dc.rights
Attribution 3.0 Spain
dc.rights.uri
dc.subject
dc.title
The minimum tree for a given zero-entropy period
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.embargo.terms
Cap
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.identifier.idgrec
004123
dc.identifier.eissn
1687-0425