{ "dc.contributor.author": "Barrabés Vera, Esther" , "dc.contributor.author": "Juher, David" , "dc.date.accessioned": "2014-03-24T14:07:12Z" , "dc.date.available": "2014-03-24T14:07:12Z" , "dc.date.issued": "2005" , "dc.identifier.issn": "0161-1712 (versió paper)" , "dc.identifier.issn": "1687-0425 (versió electrònica)" , "dc.identifier.uri": "http://hdl.handle.net/10256/8985" , "dc.description.abstract": "We answer the following question: given any n∈ℕ, which is the minimum number of endpoints en of a tree admitting a zero-entropy map f with a periodic orbit of period n? We prove that en=s1s2…sk−∑i=2ksisi+1…sk, where n=s1s2…sk is the decomposition of n into a product of primes such that si≤si+1 for 1≤i<k. As a corollary, we get a criterion to decide whether a map f defined on a tree with e endpoints has positive entropy: if f has a periodic orbit of period m with em>e, then the topological entropy of f is positive" , "dc.format.mimetype": "application/pdf" , "dc.language.iso": "eng" , "dc.publisher": "Hindawi Publishing Corporation" , "dc.relation.isformatof": "Reproducció digital del document publicat a: http://dx.doi.org/10.1155/IJMMS.2005.3025" , "dc.relation.ispartof": "International Journal of Mathematics and Mathematical Sciences, 2005, núm. 19, p. 3025-3033" , "dc.relation.ispartofseries": "Articles publicats (D-IMA)" , "dc.rights": "Attribution 3.0 Spain" , "dc.rights.uri": "http://creativecommons.org/licenses/by/3.0/es/" , "dc.subject": "Òrbites" , "dc.subject": "Orbits" , "dc.subject": "Entropia topològica" , "dc.subject": "Topological entropy" , "dc.title": "The minimum tree for a given zero-entropy period" , "dc.type": "info:eu-repo/semantics/article" , "dc.rights.accessRights": "info:eu-repo/semantics/openAccess" , "dc.embargo.terms": "Cap" , "dc.type.version": "info:eu-repo/semantics/publishedVersion" , "dc.identifier.doi": "http://dx.doi.org/10.1155/IJMMS.2005.3025" , "dc.identifier.idgrec": "004123" }