Highly Effective Water Oxidation Catalysis with Iridium Complexes through the Use of NaIO4

Texto Completo
HighlyEffective.pdf embargoed access
Solicita copia
Al rellenar este formulario estáis solicitando una copia del artículo, depositado en el repositorio institucional (DUGiDocs), a su autor o al autor principal del artículo. Será el mismo autor quien decidirá enviar una copia del documento a quien lo solicite si lo considera oportuno. En todo caso, la Biblioteca de la UdG no interviene en este proceso ya que no está autorizada a facilitar artículos cuando éstos son de acceso restringido.
Exceptional water oxidation (WO) turnover frequencies (TOF=17 000 h-1), and turnover numbers (TONs) close to 400 000, the largest ever reported for a metal-catalyzed WO reaction, have been found by using [Cp*IrIII (NHC)Cl2] (in which NHC=3-methyl-1-(1 phenylethyl)-im-Idazoline-2-ylidene) as the pre-catalyst and NaIO4 as oxidant in water at 40ºC. The apparent TOF for [Cp*IrIII (NHC)X2] (1X, in which X stands for I (1I), Cl (1Cl), or triflate anion (1OTf)) and [(Cp*-NHCMe)IrIIII2] (2) complexes, is kept constant during almost all of the O2 evolution reaction when using NaIO4 as oxidant. The TOF was found to be dependent on the ligand and on the anion (TOF ranging from ≈ 600 to ≈1100 h-1 at 25ºC). Degradation of the complexes by oxidation of the organic ligands upon reaction with NaIO4 has been investigated. ¹H NMR, ESI-MS, and dynamic light-scattering measurements (DLS) of the reaction medium indicated that the complex undergoes ràpid degradation, even at low equivalents of oxidant, but this process takes place without formation of nanoparticles. Remarkably, three-month-old solution samples of oxidized pre-catalysts remain equally as active as freshly prepared solutions. A UV/Vis feature band at ƴmax=405 nm is observed in catalytic reaction solutions only when O2 evolves, which may be attributed to a resting state iridium speciation, most probably Ir–oxo species with an oxidation state higher than IV ​
​Tots els drets reservats