Dispersion Corrections Essential for the Study of Chemical Reactivity in Fullerenes

Full Text
Dispersion-Corrections.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
In a previous paper (J. Phys. Chem. A2009, 113, 9721), we analyzed theoretically the Diels−Alder cycloaddition between cyclopentadiene and C60 for which experimental results on energy barriers and reaction energies are known. One of the main conclusions reached was that the two-layered ONIOM2(B3LYP/6-31G(d):SVWN/STO-3G) method provides results very close to the full B3LYP/6-31G(d) ones. Unfortunately, however, both the exothermicity of the reaction and the energy barrier were clearly overestimated by these two methods. In the present work, we analyze the effect of the inclusion of Grimme’s dispersion corrections in the energy profile of this reaction. Our results show that these corrections are essential to get results close to the experimental values. In addition, we have performed calculations both with and without dispersion corrections for the Diels−Alder reaction of C60 and several dienes and for the Diels−Alder cycloaddition of a (5,5) single-walled carbon nanotube and 1,3-cis-butadiene. The results obtained indicate that inclusion of dispersion corrections is compulsory for the study of the chemical reactivity of fullerenes and nanotube ​
​Tots els drets reservats