A 5000-fold Increase in the HAT Reactivity of a Nonheme FeIV=O Complex Simply by Replacing Two Pyridines of N4Py Ligand with Pyrazoles
Full Text
fold-increase-in-the-hat-reactivity.pdf
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Share
A pentadentate [N5] ligand (N2Py2Pz) based on the classic N4Py (N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) framework has been synthesized by replacing the two pyridylmethyl arms with corresponding (N-methyl)pyrazolylmethyl units to form [N-bis(1-methyl-2-pyrazolyl)methyl-N-(bis-2-pyridylmethyl)amine] (L1). The oxidation of the iron(II) precursor (N2Py2Pz)FeII(OTf)2 (1) with (tBuSO2)C6H4IO at 298 K leads to the formation of the [FeIV(O)(N2Py2Pz)]2+ intermediate (2) with a near-IR band at 750 nm (εM = 250 M−1cm−1) and a t1/2 ~ 2 min at 298 K. The introduction of the less basic pyrazolylmethyl ligands in place of two pyridylmethyl units generates FeIV=O intermediate 2 that exhibits a cyclohexane oxidation rate of 0.29 s−1 at 298 K, which is 5,000-fold faster than that observed for the classic FeIV(O)N4Py parent complex and 40,000-fold more reactive than the least reactive FeIV(O)N2Py2Q′ complex in this series (Py = pyridine, Q′ = isoquinoline) recently reported by Nordlander