Unlocking the Limitations of layered LiNiO2: Insights from DFT Simulations on its Viability as a Cathode Material for Aqueous Lithium-Ion Batteries

Text Complet
039611.pdf embargoed access
Sol·licita còpia a l'autor de l'article
En omplir aquest formulari esteu demanant una còpia de l'article dipositat al repositori institucional (DUGiDocs) al seu autor o a l'autor principal de l'article. Serà el mateix autor qui decideixi lliurar una còpia del document a qui ho sol•liciti si ho creu convenient. En tot cas, la Biblioteca de la UdG no intervé en aquest procés ja que no està autoritzada a facilitar articles quan aquests són d'accés restringit.
Compartir
Aqueous lithium-ion batteries (ALiBs) present a promising avenue for safer and more sustainable energy storage solutions compared to traditional non-aqueous lithium-ion batteries. LiNiO2 (LNO) has emerged as a potential cathode material for ALiBs due to its high capacity potential and ability to facilitate Li⁺ intercalation over H⁺ intercalation in aqueous media. However, challenges remain regarding its stability and performance in aqueous electrolytes. In this study, we employ periodic density functional theory simulations to investigate the interactions between LNO surfaces and aqueous electrolytes, evaluating its viability as a cathode material for ALiBs. We have systematically and exhaustively studied the surface energetics, shedding light on the formation of NiOOHx species, one of the common issues associated with this material. We have evaluated the oxygen evolution reaction on LNO surfaces, revealing that they decompose water molecules into hydroxide and other intermediate species, thereby degrading the electrolyte. Our findings suggest that, despite their promising abilities for Li+ ion intercalation, the tendency to boost the generation of NiOOHx and its facility to decompose water at potentials lower than 1.23 V are important limitations for the battery performance ​
Aquest document està subjecte a una llicència Creative Commons:Reconeixement - No comercial - Sense obra derivada (by-nc-nd) Creative Commons by-nc-nd