Spurious Oscillations Caused by Density Functional Approximations: Who is to Blame? Exchange or Correlation?
Text Complet
Compartir
We analyze the varying susceptibilities of different density functional approximations (DFAs) to present spurious oscillations on the profiles of several vibrational properties. Among other problems, these spurious oscillations cause significant errors in harmonic and anharmonic IR and Raman frequencies and intensities. This work hinges on a judicious strategy to dissect the exchange and correlation components of DFAs and pinpoint the origins of these oscillations. We identify spurious oscillations in derivatives of all energy components with respect to nuclear displacements, including those energy terms that do not involve numerical integrations. These indirect spurious oscillations are attributed to suboptimal electron densities resulting from a self-consistent field procedure using a DFA that exhibits direct spurious oscillations. Direct oscillations stem from inaccurate numerical integration of the exchange and correlation energy density functionals. A thorough analysis of direct spurious oscillations reveals that only a handful of exchange and correlation components are insensitive to spurious oscillations, giving rise to three families of functionals, BH&H, LSDA, and BLYP. Among the functionals in these families, we encounter four widespread DFAs: BLYP, B3LYP, LC-BLYP, and CAM-B3LYP. Certain DFAs like PBE appear less sensitive to spurious oscillations due to compensatory cancellations between their energy components. Additionally, we found non-negligible but small oscillations in PBE and TPSS, which could be safely employed provided a sufficiently large integration grid is used in the calculations. These findings hint at the key components of current approximations to be improved and emphasize the necessity to develop accurate DFAs suitable for studying molecular spectroscopies