A Novel Method for Dynamic Molecular Weight Distribution Determination in Organometallic Catalyzed Olefin Polymerizations
Full Text
Share
In this study, a mathematical model for the time evolution of molecular weight distribution (MWD) was developed. This temporal model is based on the well-known Ziegler–Natta polymerization mechanism and reaction kinetics by the parametric solving of related differential equations. However, due to the generality of the reactions involved, the model can be extended to the other type of catalysts, such as metallocenes, Phillips, etc. The superiority of this model lies in providing the possibility of a more precise prediction over the active sites and kinetic parameters using a simple mathematical equation, which leads to improved reactor design in large-scale production. The model uses a function to develop a methodology for MWD calculations. In this way, the transient response is limited to the first few minutes of the reaction; however, it is important as it demonstrates the establishment of the final MWD. According to the results, almost for practical conditions with negligible transfer resistances, the time dependency of the MWD has a transient interval, depending on the kinetic constants of polymerization reactions. Increasing the time to infinity results in an increase in MW and a widening in MWD, which confirms the experimental plots well. In short, the main advantage of our proposed model over the previous ones is its ability to predict the MWD even before the completion of the polymerization reaction. The results of the present model match well with those of the well-known Schulz–Flory distribution, which only predicts the final molecular weight distribution, thus confirming that the model is reliable and generalizable