How Many Electrons Does a Molecular Electride Hold?
Texto Completo
Compartir
Electrides are very peculiar ionic compounds where electrons occupy the anionic positions. In a crystal lattice, these isolated electrons often form channels or surfaces, furnishing electrides with many traits with promising technological applications. Despite their huge potential, thus far, only a few stable electrides have been produced because of the intricate synthesis they entail. Due to the difficulty in assessing the presence of isolated electrons, the characterization of electrides also poses some serious challenges. In fact, their properties are expected to depend on the arrangement of these electrons in the molecule. Among the criteria that we can use to characterize electrides, the presence of a non-nuclear attractor (NNA) of the electron density is both the rarest and the most salient feature. Therefore, a correct description of the NNA is crucial to determine the properties of electrides. In this paper, we analyze the NNA and the surrounding region of nine molecular electrides to determine the number of isolated electrons held in the electride. We have seen that the correct description of a molecular electride hinges on the electronic structure method employed for the analyses. In particular, one should employ a basis set with sufficient flexibility to describe the region close to the NNA and a density functional approximation that does not suffer from large delocalization errors. Finally, we have classified these nine molecular electrides according to the most likely number of electrons that we can find in the NNA. We believe this classification highlights the strength of the electride character and will prove useful in designing new electrides
Tots els drets reservats