Experimental and DFT study on titanium-based half-sandwich metallocene catalysts and their application for production of 1-hexene from ethylene
Texto Completo
Compartir
Different types of [Ind-C(R)-Phenyl]TiCl3 catalysts based on pendant arene containing indenyl (Ind) ligand bearing various types of bridges (R=cyclo‐C5H10 (C1), (CH3)2 (C2), 4-tBu-cyclo‐C5H9 (C3), and cyclo‐C6H12 (C4)) have been synthesized, and used in the ethylene trimerization to 1-hexene in the presence of methyl aluminoxane (MAO) as co-catalyst. The reaction conditions were first optimized in C2 catalyst case, where the highest 1-hexene product was achieved at the catalyst concentration, temperature and ethylene pressure of 1.5 10−3 M, 40 °C, and 8 bar, respectively. During this optimization and under specific reaction conditions, a switching behavior from ethylene trimerization to polymerization was also detected, as an undesired reaction. At the optimized conditions, synthesized catalysts showed the following trend toward both 1-hexene yield and selectivity: C1>C2>C3>C4. Then, to shed light on the possible reaction mechanisms and to confirm the activity trend obtained in experimental section, density functional theory (DFT) calculations were employed. In this line, obtained results for activity trend in the simulation studies fit well with the experiments. According to both experimental and DFT results, the highest catalytic activity was observed in the presence of the catalyst with a cyclohexane middle bridge (C1)