GSTM3, but not IZUMO1, is a cryotolerance marker of boar sperm
Full Text
Share
Cryopreservation is currently the most efficient method for long-term preservation of mammalian
gametes and is extensively used in swine artificial insemination (AI) centres. However, it is well-known that
cryopreservation procedures induce changes in the water phase in both intra and extracellular compartments,
which alter the content and localisation of several proteins and ends up curtailing the structural integrity of
functional sperm (i.e., cryoinjuries). Alterations and deficiencies of sperm-oocyte binding proteins during gamete
recognition are one of the causes of reproductive failure both in vitro and in vivo. In this sense, characterisation of
cryopreservation effects upon oocyte-binding proteins of sperm, such as IZUMO1 and GSTM3, is essential when
assessing the impact of this technique in swine reproduction.
Results: Cryopreservation was found to induce changes in the localisation of IZUMO1 and GSTM3 in boar sperm.
However, the relative content of both proteins was not altered after thawing. Furthermore, whereas IZUMO1
content was found not to be related to the cryotolerance of boar sperm, GSTM3 content was observed to be
higher in poor (PFE) than in good (GFE) freezability ejaculates in both pre-frozen (1.00 INT·mm2 ± 0.14 INT·mm2 vs.
0.72 INT·mm2 ± 0.15 INT·mm2
; P < 0.05) and post-thawed (0.96 INT·mm2 ± 0.20 INT·mm2 vs. 70 INT·mm2 ± 0.19
INT·mm2
; P < 0.05) samples. Moreover, GSTM3 levels were found to be higher in those spermatozoa that exhibited
low mitochondrial activity, high reactive oxygen species (ROS) production, and high membrane lipid disorder postthaw (P < 0.05).
Conclusions: The difference in GSTM3 content between GFE and PFE, together with this protein having been found
to be related to poor sperm quality post-thaw, suggests that it could be used as a cryotolerance marker of boar
spermatozoa. Furthermore, both IZUMO1 and GSTM3 relocate during cryopreservation, which could contribute to the
reduced fertilising capacity of frozen-thawed boar sperm