Isolation of Key Organometallic Aryl-Co(III) Intermediates in Cobalt- Catalyzed C(sp2)−H Functionalizations and New Insights into Alkyne Annulation Reaction Mechanisms

Full Text
Isolation-Key-Organometallic.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Share
The selective annulation reaction of alkynes with substrates containing inert C-H bonds using cobalt as catalyst is currently a topic attracting significant interest. Unfortunately, the mechanism of this transformation is still relatively poorly understood, with little experimental evidence for intermediates, although an organometallic Co(III) species is generally implicated. Herein, we describe a rare example of the preparation and characterization of benchtop-stable organometallic aryl-Co(III) compounds (NMR, HRMS, XAS, and XRD) prepared through a C(sp2)-H activation, using a model macrocyclic arene substrate. Furthermore, we provide crystallographic evidence of an organometallic aryl-Co(III) intermediate proposed in 8-aminoquinoline-directed Co-catalyzed C-H activation processes. Subsequent insights obtained from the application of our new organometallic aryl-Co(III) compounds in alkyne annulation reactions are also disclosed. Evidence obtained from the resulting regioselectivity of the annulation reactions and DFT studies indicates that a mechanism involving an organometallic aryl-Co(III)-alkynyl intermediate species is preferred for terminal alkynes, in contrast to the generally accepted migratory insertion pathway ​
​Tots els drets reservats