Canopy-scale turbulence under oscillatory flow

Texto Completo
Canopy-scale-turbulence.pdf embargoed access
Solicita copia
Al rellenar este formulario estáis solicitando una copia del artículo, depositado en el repositorio institucional (DUGiDocs), a su autor o al autor principal del artículo. Será el mismo autor quien decidirá enviar una copia del documento a quien lo solicite si lo considera oportuno. En todo caso, la Biblioteca de la UdG no interviene en este proceso ya que no está autorizada a facilitar artículos cuando éstos son de acceso restringido.
Compartir
The aim of this study is to understand the turbulent flow structure within diverse canopy models dominated by progressive waves. A set of experimental conditions were considered in a laboratory flume: three vegetation models (submerged rigid, submerged flexible and emergent rigid), three canopy densities (128, 640 and 1280 stems/m2) and three wave frequencies (f=0.8, 1 and 1.4Hz). The canopy morphology through both the plant flexibility and height and the canopy density were the characteristic parameters that exerted a control on wave induced turbulence within the canopy bed. In the flexible canopy model, sheltering at the bed was observed and was associated with the movement of the blades. In contrast, in the rigid canopy model larger TKE was found as compared with the case without canopy. The increase of TKE was associated with the production of the stem-wake turbulence. Sheltering in the submerged rigid canopy model was found at the lower layer for the largest canopy density and highest wave frequency because of a great loss of wave velocity, confined below the top of the canopy. Sweeps and ejections were the predominant events, enhancing the transfer of momentum at the top of the canopy. Therefore, below the top of the submerged rigid canopy was characterized by a vertical energy exchange zone. Unlike the submerged model, sheltering was always found for emergent rigid vegetation, and attributed to the inhibition of the wave energy at all depths ​
​Tots els drets reservats