Canopy-scale turbulence under oscillatory flow

Full Text
Canopy-scale-turbulence.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
The aim of this study is to understand the turbulent flow structure within diverse canopy models dominated by progressive waves. A set of experimental conditions were considered in a laboratory flume: three vegetation models (submerged rigid, submerged flexible and emergent rigid), three canopy densities (128, 640 and 1280 stems/m2) and three wave frequencies (f=0.8, 1 and 1.4Hz). The canopy morphology through both the plant flexibility and height and the canopy density were the characteristic parameters that exerted a control on wave induced turbulence within the canopy bed. In the flexible canopy model, sheltering at the bed was observed and was associated with the movement of the blades. In contrast, in the rigid canopy model larger TKE was found as compared with the case without canopy. The increase of TKE was associated with the production of the stem-wake turbulence. Sheltering in the submerged rigid canopy model was found at the lower layer for the largest canopy density and highest wave frequency because of a great loss of wave velocity, confined below the top of the canopy. Sweeps and ejections were the predominant events, enhancing the transfer of momentum at the top of the canopy. Therefore, below the top of the submerged rigid canopy was characterized by a vertical energy exchange zone. Unlike the submerged model, sheltering was always found for emergent rigid vegetation, and attributed to the inhibition of the wave energy at all depths ​
​Tots els drets reservats