Mechanism of CO2 Fixation by IrI–X Bonds (X = OH, OR, N, C)

Full Text
Mechanism-of-CO2.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Share
KGaA, Weinheim.Density functional theory calculations have been used to investigate the CO2 fixation mechanism proposed by Nolan et al. for the IrI complex [Ir(cod)(IiPr)(OH)] (1; cod = 1,5-cyclooctadiene; IiPr = 1,3-diisopropylimidazol-2-ylidene) and its derivatives. For 1, our results suggest that CO2 insertion is the rate-limiting step rather than the dimerization step. Additionally, in agreement with the experimental results, our results show that CO2 insertion into the Ir-OR1 (R1 = H, methyl, and phenyl) and Ir-N bonds is kinetically facile, and the calculated activation energies span a range of only 12.0-23.0 kcal/mol. Substantially higher values (35.0-50.0 kcal/mol) are reported for analogous Ir-C bonds ​
​Tots els drets reservats