Comparison of Fe-Ni based alloys prepared by ball milling and rapid solidification

Full Text
Comparison-of-Fe-Ni.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Share
Mechanical alloying (MA) and rapid solidification (RS) are two important routes to obtain amorphous alloys. An Fe-Ni based metal-metalloid alloy (Fe 50Ni30P14Si6) prepared by these two different processing routes was studied by differential scanning calorimetry, scanning electron microscopy with microanalysis, inductive coupled plasma, X-ray diffraction (XRD) and transmission Mössbauer spectroscopy (TMS). The results were compared with that obtained from other Fe-Ni based alloys of similar compositions. The structural analyses show that the materials obtained by mechanical alloying are not completely disordered after 40 h of milling whereas fully amorphous alloys were obtained by rapid solidification. TMS analyses show that, independent of the composition, after milling for 40 h, about 7% of the Fe remains unreacted. Furthermore, the thermal stability of mechanically alloyed samples is lower than that of the analogous material prepared by rapid solidification. In the MA alloys, a broad exothermic process associated to structural relaxation begins at low temperature. XRD patterns of crystallized alloys indicate that the crystallization products are bcc(Fe,Ni), fcc(Ni,Fe), and (Fe,Ni)-phosphides and -silicides ​
​Tots els drets reservats