A network-based approach to the analysis of ontogenetic diet shifts: An example with an endangered, small-sized fish

Full Text
network-based-approach.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Share
Many organisms exhibit ontogenetic shifts in their diet and habitat use, which often exert a large influence on the structure and expected dynamics of food webs and ecological communities. Nevertheless, reliable methods for detecting these niche shifts from consumption data are limited. In this study we present a new approach for the detection and analysis of ontogenetic diet shifts, based on complex network theory. As a case study, we apply these methods to the endangered, small fish Aphanius iberus. The stage-structured consumer population and its set of consumed prey are represented as an unweighted bipartite network. A statistical evaluation of the resulting network structure permits to uncover empirical patterns of ontogenetic diet shifts. We test for changes in niche breadth, as well as nestedness and diet modularity along ontogeny. These tests were carried out on the subnetworks describing consumption, positive electivity, and negative electivity on prey items. The statistical significance was established by means of null model analyses. Our analyses reveal a nested diet, along with a gradual decrease in diet breadth and a modular structure (i.e. abrupt changes) of elected preys along the ontogeny of A. iberus. The detection of network structure by means of the use of tools from complex network theory is shown to be a promising method for studying ontogenetic niche shifts ​
​Tots els drets reservats