A new dinuclear Ru-Hbpp based water oxidation catalyst with a trans-disposition of the Ru-OH

Full Text
new-dinuclea-Ru-Hbpp.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Share
The bis(2-pyridyl)ethylamine (bpea) ligand has been used as a starting material for the synthesis of dinuclear Ru complexes of general formula trans,fac-{[RunX(bpea)]2(μ-bpp)}m+ (for X = Cl, n = II, m = 1, trans-RuII-Cl, 1+; for X = OH, n = III, m = 3, trans-RuIII-OH, 23+) where the 3,5-bis(2-pyridyl)pyrazolate anionic ligand (bpp) acts as bridging dinucleating ligand, the bpea ligand coordinates in a facial manner and the monodentate ligands X are situated in a trans fashion with regard to one another. These complexes have been characterized in solution by 1D and 2D NMR spectroscopy, UV-vis and electrochemical techniques and in the solid state by X-ray diffraction analysis. The reaction of 1(PF6) with Ag+ generates the corresponding solvated complex where the Cl ligand has been removed as insoluble AgCl, followed by the oxidation of Ru(ii) to Ru(iii) to generate the corresponding dinuclear complex trans-RuIII-OH, 2(PF6)3. The latter has been shown to catalytically oxidize water to molecular dioxygen using Ce(iv) as oxidant. Quantitative gas evolution as a function of time has been monitored on line by both manometry and mass spectroscopy (MS) techniques. Relative initial velocities of oxygen formation together with structural considerations rule out an intramolecular O-O bond formation pathway ​
​Tots els drets reservats