H2O2-based oxidation processes for the regeneration of activated carbons saturated with volatile organic compounds of different polarity

Full Text
H2O2-basedOxidationProcesses.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Share
This study reports the sequential regeneration treatment of activated carbons (ACs) saturated with volatile organic compounds (VOCs) of different polarity using H2O2 as oxidizing agent. In this process, VOCs were adsorbed onto the AC and further oxidized by H2O2. A commercial AC was selected and saturated with three different VOCs: two non-polar and hydrophobic VOCs, toluene and limonene, and one polar and hydrophilic VOC, methyl ethyl ketone (MEK). The saturated AC was regenerated with H2O2, and the Fenton reagent for comparison. It was found that regeneration efficiencies obtained with the H2O2 treatment were equal to or even higher than those obtained with the Fenton treatment. The fate of the pre-adsorbed VOCs, once the regeneration process is completed was studied. It was found that this regeneration treatment is limited for non-polar VOCs such as toluene and limonene, as they tend to remain adsorbed onto the ACs after regeneration treatment. Contrarily, MEK tend to be transferred to the bulk phase and react with the generated oxidant species ​
​Tots els drets reservats