Exploring the potential energy surface of E2P4 clusters (E=Group 13 element): The quest for inverse carbon-free sandwiches

Full Text
ExploringPotential.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Share
Inverse carbon-free sandwich structures with formula E2P 4 (E=Al, Ga, In, Tl) have been proposed as a promising new target in main-group chemistry. Our computational exploration of their corresponding potential-energy surfaces at the S12h/TZ2P level shows that indeed stable carbon-free inverse-sandwiches can be obtained if one chooses an appropriate Group 13 element for E. The boron analogue B2P4 does not form the D4h-symmetric inverse-sandwich structure, but instead prefers a D2d structure of two perpendicular BP2 units with the formation of a double B-B bond. For the other elements of Group 13, Al-Tl, the most favorable isomer is the D4h inverse-sandwich structure. The preference for the D2d isomer for B2P 4 and D4h for their heavier analogues has been rationalized in terms of an isomerization-energy decomposition analysis, and further corroborated by determination of aromaticity of these species. Topsy turvy sandwiches: The possibility of the formation of inverse carbon-free sandwiches for clusters of type E2P4 with Group 13 elements B-Tl has been explored. This proposition is based on consideration of the aromaticity of the square-planar P4 2- unit, which should favor the formation of the cluster with a proper choice of the E + ions ​
​Tots els drets reservats