{ "dc.contributor": "Universitat de Girona. Departament d'Informàtica i Matemàtica Aplicada" , "dc.contributor.author": "Bruno, Francesca" , "dc.contributor.author": "Greco, Fedele" , "dc.contributor.editor": "Daunis-i-Estadella, Pepus" , "dc.contributor.editor": "Martín Fernández, Josep Antoni" , "dc.date.accessioned": "2008-05-15T09:33:10Z" , "dc.date.available": "2008-05-15T09:33:10Z" , "dc.date.issued": "2008-05-30" , "dc.identifier.citation": "Bruno, F.; Greco, F. 'Clustering compositional data trajectories' a CODAWORK’08. Girona: La Universitat, 2008 [consulta: 15 maig 2008]. Necessita Adobe Acrobat. Disponible a Internet a: http://hdl.handle.net/10256/745" , "dc.identifier.uri": "http://hdl.handle.net/10256/745" , "dc.description.abstract": "Our essay aims at studying suitable statistical methods for the clustering of compositional data in situations where observations are constituted by trajectories of compositional data, that is, by sequences of composition measurements along a domain. Observed trajectories are known as “functional data” and several methods have been proposed for their analysis. In particular, methods for clustering functional data, known as Functional Cluster Analysis (FCA), have been applied by practitioners and scientists in many fields. To our knowledge, FCA techniques have not been extended to cope with the problem of clustering compositional data trajectories. In order to extend FCA techniques to the analysis of compositional data, FCA clustering techniques have to be adapted by using a suitable compositional algebra. The present work centres on the following question: given a sample of compositional data trajectories, how can we formulate a segmentation procedure giving homogeneous classes? To address this problem we follow the steps described below. First of all we adapt the well-known spline smoothing techniques in order to cope with the smoothing of compositional data trajectories. In fact, an observed curve can be thought of as the sum of a smooth part plus some noise due to measurement errors. Spline smoothing techniques are used to isolate the smooth part of the trajectory: clustering algorithms are then applied to these smooth curves. The second step consists in building suitable metrics for measuring the dissimilarity between trajectories: we propose a metric that accounts for difference in both shape and level, and a metric accounting for differences in shape only. A simulation study is performed in order to evaluate the proposed methodologies, using both hierarchical and partitional clustering algorithm. The quality of the obtained results is assessed by means of several indices" , "dc.description.sponsorship": "Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Generalitat de Catalunya, Departament d’Innovació, Universitats i Recerca; Ministerio de Educación y Ciencia; Ingenio 2010." , "dc.format.mimetype": "application/pdf" , "dc.language.iso": "eng" , "dc.publisher": "Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada" , "dc.rights": "Tots els drets reservats" , "dc.subject": "Anàlisi matemàtica" , "dc.subject": "Simulació, Mètodes de" , "dc.subject": "Anàlisi de conglomerats" , "dc.title": "Clustering compositional data trajectories" , "dc.type": "info:eu-repo/semantics/conferenceObject" , "dc.rights.accessRights": "info:eu-repo/semantics/openAccess" }