{ "dc.contributor": "Universitat de Girona. Departament d'Informàtica i Matemàtica Aplicada" , "dc.contributor.author": "Egozcue, Juan José" , "dc.contributor.author": "Díaz Barrero, José Luis" , "dc.contributor.author": "Pawlowsky-Glahn, Vera" , "dc.contributor.editor": "Daunis i Estadella, Josep" , "dc.contributor.editor": "Martín Fernández, Josep Antoni" , "dc.date.accessioned": "2008-05-12T11:18:06Z" , "dc.date.available": "2008-05-12T11:18:06Z" , "dc.date.issued": "2008-05-28" , "dc.identifier.citation": "Egozcue, J.J.; Díaz Barrero, J.L.; Pawlowsky Glahn, V. 'Compositional analysis of bivariate discrete probabilities' a CODAWORK’08. Girona: La Universitat, 2008 [consulta: 12 maig 2008]. Necessita Adobe Acrobat. Disponible a Internet a: http://hdl.handle.net/10256/717" , "dc.identifier.uri": "http://hdl.handle.net/10256/717" , "dc.description.abstract": "A joint distribution of two discrete random variables with finite support can be displayed as a two way table of probabilities adding to one. Assume that this table has n rows and m columns and all probabilities are non-null. This kind of table can be seen as an element in the simplex of n · m parts. In this context, the marginals are identified as compositional amalgams, conditionals (rows or columns) as subcompositions. Also, simplicial perturbation appears as Bayes theorem. However, the Euclidean elements of the Aitchison geometry of the simplex can also be translated into the table of probabilities: subspaces, orthogonal projections, distances. Two important questions are addressed: a) given a table of probabilities, which is the nearest independent table to the initial one? b) which is the largest orthogonal projection of a row onto a column? or, equivalently, which is the information in a row explained by a column, thus explaining the interaction? To answer these questions three orthogonal decompositions are presented: (1) by columns and a row-wise geometric marginal, (2) by rows and a columnwise geometric marginal, (3) by independent two-way tables and fully dependent tables representing row-column interaction. An important result is that the nearest independent table is the product of the two (row and column)-wise geometric marginal tables. A corollary is that, in an independent table, the geometric marginals conform with the traditional (arithmetic) marginals. These decompositions can be compared with standard log-linear models. Key words: balance, compositional data, simplex, Aitchison geometry, composition, orthonormal basis, arithmetic and geometric marginals, amalgam, dependence measure, contingency table" , "dc.description.sponsorship": "Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Generalitat de Catalunya, Departament d’Innovació, Universitats i Recerca; Ministerio de Educación y Ciencia; Ingenio 2010." , "dc.format.mimetype": "application/pdf" , "dc.language.iso": "eng" , "dc.publisher": "Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada" , "dc.rights": "Tots els drets reservats" , "dc.subject": "Geometria d'Aitchison" , "dc.subject": "Probabilitats" , "dc.title": "Compositional analysis of bivariate discrete probabilities" , "dc.type": "info:eu-repo/semantics/conferenceObject" , "dc.rights.accessRights": "info:eu-repo/semantics/openAccess" }