On the preservation of combinatorial types for maps on trees
dc.contributor.author
dc.date.accessioned
2014-03-24T13:52:11Z
dc.date.available
2014-03-24T13:52:11Z
dc.date.issued
2005
dc.identifier.issn
0373-0956
dc.identifier.uri
dc.description.abstract
We study the preservation of the periodic orbits of an A-monotone tree map f:T→T in the class of all tree maps g:S→S having a cycle with the same pattern as A. We prove that there is a period-preserving injective map from the set of (almost all) periodic orbits of ƒ into the set of periodic orbits of each map in the class. Moreover, the relative positions of the corresponding orbits in the trees T and S (which need not be homeomorphic) are essentially preserved
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Association des Annales de l'Institut Fourier
dc.relation.isformatof
Reproducció digital del document publicat a: http://aif.cedram.org/item?id=AIF_2005__55_7_2375_0
dc.relation.ispartof
© Annales de l'institut Fourier, 2005, vol. 55, núm. 7, p.2375-2398
dc.relation.ispartofseries
Articles publicats (D-IMA)
dc.rights
Tots els drets reservats
dc.title
On the preservation of combinatorial types for maps on trees
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.embargo.terms
Cap
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.idgrec
004121
dc.identifier.eissn
1777-5310