An Efficient Nominal Unification Algorithm
dc.contributor.author
dc.date.accessioned
2013-10-03T10:24:42Z
dc.date.available
2013-10-03T10:24:42Z
dc.date.issued
2010
dc.identifier.issn
1868-8969
dc.identifier.uri
dc.description.abstract
Nominal Unification is an extension of first-order unification where terms can contain binders and unification is performed modulo α equivalence. Here we prove that the existence of nominal unifiers can be decided in quadratic time. First, we linearly-reduce nominal unification problems to a sequence of freshness and equalities between atoms, modulo a permutation, using ideas as Paterson and Wegman for first-order unification. Second, we prove that solvability of these reduced problems may be checked in quadràtic time. Finally, we point out how using ideas of Brown and Tarjan for unbalanced merging, we could solve these reduced problems more efficiently
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Dagstuhl Publishing
dc.relation.isformatof
Reproducció digital del document publicat a: http://dx.doi.org/10.4230/LIPIcs.RTA.2010.209
dc.relation.ispartof
Leibniz International Proceedings in Informatics (LIPPICS) : Proceedings of the 21st International Conference on Rewriting Techniques and Applications : RTA 2010 : July 11-13 2010: Edinburgh, Scottland, UK, 2010, vol. 6, p.209-226
dc.relation.ispartofseries
Articles publicats (D-IMA)
dc.rights
Attribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.uri
dc.subject
dc.title
An Efficient Nominal Unification Algorithm
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.embargo.terms
Cap
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.identifier.idgrec
017110