Waves and turbulence on submerged and emergent aquatic vegetation
Text Complet
Compartir
Coastal zones are governed by physical forces originating from tidal currents, waves, winds and night convection, amongst others, and are characterized by the presence of canopy meadows. This thesis studies the hydrodynamic in a fluid dominated by: nearly isotropic turbulence, progressive waves and breaking waves in different canopy models. Under nearly isotropic turbulence sheltering is enhanced by a reduction in the plant-to-plant distance. Under progressive waves sheltering is associated with the reduction of wave velocity at the top of submerged rigid canopy. Sheltering observed in the submerged flexible model is caused by blade movement which absorbes the energy. Emergent rigid vegetation shows sheltering. On the other hand, for some specific progressive wave conditions and plant densities and under a fluid dominated by breaking waves, turbulence increases within the meadow if Reynolds number, based on wave velocity, is larger than 300
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/3.0/es/