Propagation through fractal media: The Sierpinski gasket and the Koch curve
dc.contributor.author
dc.date.accessioned
2013-05-30T10:11:32Z
dc.date.available
2013-05-30T10:11:32Z
dc.date.issued
2004
dc.identifier.issn
0295-5075
dc.identifier.uri
dc.description.abstract
We present new analytical tools able to predict the averaged behavior of fronts spreading through self-similar spatial systems starting from reaction-diffusion equations. The averaged speed for these fronts is predicted and compared with the predictions from a more general equation (proposed in a previous work of ours) and simulations. We focus here on two fractals, the Sierpinski gasket (SG) and the Koch curve (KC), for two reasons, i.e. i) they are widely known structures and ii) they are deterministic fractals, so the analytical study of them turns out to be more intuitive. These structures, despite their simplicity, let us observe several characteristics of fractal fronts. Finally, we discuss the usefulness and limitations of our approa
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
EDP Sciences
dc.relation.isformatof
Reproducció digital del document publicat a: http://dx.doi.org/10.1209/epl/i2004-10284-4
dc.relation.ispartof
© Europhysics Letters, 2004, vol. 68, núm. 6, p. 769-775
dc.relation.ispartofseries
Articles publicats (D-F)
dc.rights
Tots els drets reservats
dc.title
Propagation through fractal media: The Sierpinski gasket and the Koch curve
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.embargo.terms
Cap
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.identifier.idgrec
000874
dc.identifier.eissn
1286-4854